
Efficient Java Matrix Library

Peter Abeles

June 26, 2010

Contents

1 IMPORANT 2

2 Introduction 2

3 Data Structures and Algorithms 3

4 Examples 4
4.1 KalmanFilterSimple.java . 4
4.2 KalmanFilterOps.java . 4
4.3 KalmanFilterAlg.java . 5
4.4 Notes . 5

A Design Philosophy 5
A.1 Why multiple implementations? 6

Abstract

Efficient Java Matrix Library (EJML) is a linear algebra library
for manipulating dense matrices. Its design goals are; 1) to be as
computationally efficient as possible for both small and large matrices,
and 2) to be accessible to both novices and experts. These goals are
accomplished by dynamically selecting the best algorithms to use at
runtime and by designing a clean API. EJML is free, written in 100%
Java and has been released under an LGPL license.

http://code.google.com/p/efficient-java-matrix-library/

1

1 IMPORANT

This document is horribly out of date but for some reason its a top result on
google. To get the latest documentation go to:

http://code.google.com/p/efficient-java-matrix-library/

2 Introduction

Efficient Java Matrix Library (EJML) is a linear algebra library for manip-
ulating dense matrices. Its design goals are; 1) to be as computationally
efficient as possible for both small and large matrices, and 2) to be accessible
to both novices and experts. These goals are accomplished by dynamically
selecting the best algorithms to use at runtime and by designing a clean API.
EJML is free, written in 100% Java and has been released under an LGPL
license.

EJML has three distinct ways to interact with it. This allows a program-
mer to choose between simplicity and efficiency. 1) A simplified interface
that allows a more object oriented way of programming. 2) Letting EJML
select the best algorithm to use. 3) Directly calling specialized algorithms.
In general EJML is one the fastest single threaded pure Java library. See
Java Matrix Benchmark for a detailed comparison of different libraries.

The following is provided:

• Basic operators (addition, multiplication, ...).

• Linear Solvers (batch and incremental).

• Decompositions (LU, QR, Cholesky, SVD, Eigenvalue).

• Matrix Features (rank, symmetric, definitiveness, ...).

• Random Matrices (covariance, orthogonal, symmetric, ..

In addition there are many specialized algorithms for specific matrix sizes
and types.

2

3 Data Structures and Algorithms

DenseMatrix64F is the most basic data structure in EJML. It is a dense
matrix composed of doubles. Internally the matrix is stored as a single array
using a row-major format, see Figure 1. SimpleMatrix is a wrapper on top
of DenseMatrix64F that provides a simplified interface.

a11 a12 a13
a21 a22 a23

→ a11 a12 a13 a21 a22 a23

Figure 1: A matrix encoded in row-major format.

An operation, in this context, is just a mathematical function that takes
at least one matrix in as an input. For example addition and subtraction are
both operators. CommonOps and SpecializedOps are two classes which have
several static functions that are operators for DenseMatrix64F. SimpleMatrix
has all of its operators as part of its class for convenience. For a comparision
of using operators with DenseMatrix64F and SimpleMatrix see Figure 2.

There are many operators in EJML. Figure 3 contains a list of some of the
operators in this libraries. Figure 4 contains a list of operators that can be di-
rectly performed by SimpleMatrix. To make SimpleMatrix easier to program
with, only a subset of the most essential operators are provided. However,
by directly accessing the internal DenseMatrix64 in a SimpleMatrix, all the
operators can be called on it.

Some of the operators do not specify which specific algorithm is used
and some do. For example, many of the operators in CommonOps can call
different algorithms depending on the structure of the matrix passed in. This
allows the most efficient algorithm to be called. However, many the functions
in MatrixMatrixMult are designed to be optimal for matrices of different
sizes. Unless there is a very good reason not to, all calls should be made to
the more generic operators.

One good reason not to use the generic operators is if you, the program-
mer, knows something they do not. For example, if a matrix is positive
definite, then the generic inverse function is suboptimal. In that situation
you should use CholeskyDecomposition directly because it is much faster.

3

Matrix multiplcation using operations.

DenseMatrix64F c =

new DenseMatrix64F(a.numRows,b.numCols);

CommonOps.mult(a,b,c);

Matrix multiplcation using SimpleMatrix

SimpleMatrix c = a.times(b);

Figure 2: Comparision operations and SimpleMatrix.

4 Examples

In the examples directory three different implementations of a Kalman fil-
ter are provided along with a Levenberg-Marquardt optimization algorithm.
These two algorithms are popular in various engineering disciplines.

The three different implementations of the Kalman filter are provided.
Each one demonstrates different ways that EJML can be used. to show off
the interfaces that one can use in EJML. In the following subsections the
update function is shown and discussed.

4.1 KalmanFilterSimple.java

Figure 5 shows several concepts related to the simple interface. The wrap()
function on the top demonstrates how a regular DenseMatrix64F can be
changed into a SimpleMatrix with ease. Memory management is at a minimal
since new matrices of the correct size are automatically created by each
operation. The code is also noticeably easier to read.

4.2 KalmanFilterOps.java

The operation interface, shown in Figure 6, is noticeably more complex. It
requires matrices to be predeclared. For this to work the programmer needs
to figure out the exact shape of these intermediate matrices. What was on

4

one line now takes up multiple lines.
Memory management is more complicated in this example. In Figure 7

matrices that store the intermediate results are declared in the constructor.
This requires more though from the programmer, but greatly reduces the
amount of memory created and destroyed each processing cycle.

4.3 KalmanFilterAlg.java

Finally there is the algorithm interface, Figure 8. Here specific algorithms
are called. The most important is the use of the Cholesky decomposition,
which speeds up the matrix inverse. In other cases it takes advantage of it
knowing before hand the size and shape of the matrix, which results in a
slight performance gain.

4.4 Notes

What is the benefit of the added complexity of using the operator and al-
gorithm interfaces over the simplistic interface? The operator interface runs
about 23% faster than the simplistic interface and the algorithm interface
runs about 28% faster than the simplistic interface. The exact performance
differences will vary greatly depending on the application.

A Design Philosophy

This library was written in response to perceived weaknesses in other Java
matrix libraries. The three biggest are, 1) unnecessarily slow performance in
small matrices, 2) lack of flexibility in memory management, and 3) needing
to choose between ease of use and performance.

One of the areas EJML performs very well is when dealing with small
matrices. This is accomplished by having very low overhead and by using
specialized algorithms for small matrices. The overhead is reduce by not
having abstraction that allow native code or java code to be run, or generic
algorithms that can work on a wide variety of matrix types. Specialized
algorithms vary from switching the order the matrix is traversed depending
on its size to having hand coded algorithms for specific matrix sizes. EJML
also performs well with large matrices, where it still most often performs
significantly better than other related libraries.

5

One way to write efficient Java algorithms is to minimize the amount
of memory that is created and destroyed. This smooths out the processing
time by not having the garbage collector needing to run as often and reduces
the number of cycles spent reinitializing the data. All of the algorithms in
EJML have been coded such that they predeclared all the data they use. The
reshape function is also provided. While extremely easy to implement, it is
often neglected in other libraries forcing you to declare a new matrix when
the data changes.

Jama1 is still a popular library despite no longer being actively developed.
The primary reason for this is that it is easy to use. Matrix Toolkit Java
(MTJ)2 gives the developer more control, but is harder to use. EJML uses
ideas from both libraries to create a simple yet robust interface. A user
can program in EJML using the following interfaces; simple, operator, and
algorithm.

Simple is a wrapper on top of the operator interface. It hides much of
the memory management from the user and allows more readable code. The
operator interface simplifies the selection of which algorithm to use from the
user by automatically selecting what it thinks is the best one. The algorithm
interface gives complete control to the programmer, but requires more skill
and knowledge to user effectively.

A.1 Why multiple implementations?

Optimizing an algorithm for processing small and large matrices requires
different strategies. An optimal small matrix algorithm typically minimizes
the number of operations. Large matrix algorithms need to minimize the
number of operations and cache misses.

On a modern desktop computer missing a CPU cache entails a large
performance hit. A cache miss is when a computer needs to access memory
that is not available on one of its high speed memory caches. This forces it
to access the much slower main memory.

Small matrices can often be stored entirely in the CPU’s cache, making it
much less likely to have a cache miss. Large matrix algorithms are designed
to avoid cache misses, often by processing the data in a less straight forward
way that takes more operations. Typically running a small matrix algorithm

1http://math.nist.gov/javanumerics/jama/
2http://code.google.com/p/matrix-toolkits-java/

6

on a large matrix will result in a very large peformance hit, but the inverse
only results in a relatively small performance hit.

7

Class function description
CommonOps mult C = AB and C = αAB and C = ATB
CommonOps multTranA C = ATB and C = αATB
CommonOps multTranAB C = ATBT and C = αATBT

CommonOps multTranB C = ABT and C = αABT

CommonOps multAdd C = C + AB and C = C + αAB
CommonOps multAddTranA C = C + ATB and C = C + αATB
CommonOps multAddTranAB C = C + ATBT and C = C + αATBT

CommonOps multAddTranB C = C + ABT and C = C + αABT

CommonOps multElement cij = aijbij
CommonOps add C = A+B, C = αA+ βB
CommonOps addEquals A = A+B, A = A+ βB
CommonOps sub C = A−B
CommonOps subEquals A = A−B
CommonOps invert Matrix inverse A−1

CommonOps solve Solves for X = A−1B
CommonOps normF Matrix norm
CommonOps scale aij = αaij
CommonOps transpose aij = aji
CommonOps trace

∑
i aii

SpecializedOps identity Creates an identity matrix
SpecializedOps diag Creates a diagonal matrix
SpecializedOps submatrix Creates a submatrix of the original

SpecializedOps diffNormF
√∑

ij(aij − bij)2

SpecializedOps diffNormP1
∑

ij |aij − bij|
SpecializedOps copyChangeRow Swaps the rows of the original matrix
MatrixFeatures hasNaN Does the matrix contain a NaN
MatrixFeatures hasUncountable Does the matrix contain a NaN or Infinity
MatrixFeatures isVector Is the matrix a vector?
MatrixFeatures isPositiveDefinite Is the matrix positive definite?
MatrixFeatures isPositiveSemidefinite Is the matrix positive semidefinite?
MatrixFeatures isSquare Is the matrix square?
MatrixFeatures isSymmetric Is the matrix symmetric?
MatrixFeatures isSimilar |aij − bij| ≤ σ ∀ i, j
CovarianceOps isValidFast Quick covariance validity check.
CovarianceOps isValid Rigerous covariance validity check.
CovarianceOps invert Faster covariance matrix inversion.
CovarianceOps randomVector Draws a random vector from the covariance.

Figure 3: Some of the matrix operators included in EJML8

function description
wrap Allows a DenseMatrix64F to be manipulated as a SimpleMatrix.
identity Creates an identity matrix.
random Creates a matrix with random elements.
diag Creates a diagonal matrix.
getMatrix Returns the internal DenseMatrix64F.
transpose Returns the transpose of this matrix.
mult(B) Returns AB
plus(B) Returns A+B
minus(B) Returns A−B
plus(β,B) Returns A+ βB
scale(α) Returns αA
invert() Returns A−1

solve(B) Returns X = A−1B
set(val) aij = val
zero aij = 0
norm Returns the matrix norm.
determinant Returns the determinant.
trace Returns the matrix’s trace.
reshape Changes the matrix’s shape with out declaring new data.
computeSVD Singular Value Decomposition
set(i,j,val) aij = val
get(i,j) Returns aij
numRows() Returns number of rows.
numCols() Returns number of columns.

Figure 4: Functions provided by SimpleMatrix.

9

public void update(DenseMatrix64F _z, DenseMatrix64F _R) {

// a fast way to make the matrices usable by SimpleMatrix

SimpleMatrix z = SimpleMatrix.wrap(_z);

SimpleMatrix R = SimpleMatrix.wrap(_R);

// y = z - H x

SimpleMatrix y = z.minus(H.mult(x));

// S = H P H’ + R

SimpleMatrix S = H.mult(P).mult(H.transpose()).plus(R);

// K = PH’S^(-1)

SimpleMatrix K = P.mult(H.transpose().mult(S.invert()));

// x = x + Ky

x = x.plus(K.mult(y));

// P = (I-kH)P = P - KHP

P = P.minus(K.mult(H).mult(P));

}

Figure 5: Code from KalmanFilterSimple.java

10

public void update(DenseMatrix64F z, DenseMatrix64F R) {

// y = z - H x

mult(H,x,y);

sub(z,y,y);

// S = H P H’ + R

mult(H,P,c);

multTransB(c,H,S);

addEquals(S,R);

// K = PH’S^(-1)

if(!invert(S,S_inv)) throw new RuntimeException("Invert failed");

multTransA(H,S_inv,d);

mult(P,d,K);

// x = x + Ky

mult(K,y,a);

addEquals(x,a);

// P = (I-kH)P = P - (KH)P = P-K(HP)

mult(H,P,c);

mult(K,c,b);

subEquals(P,b);

}

Figure 6: Code from KalmanFilterOps.java

11

a = new DenseMatrix64F(dimenX,1);

b = new DenseMatrix64F(dimenX,dimenX);

y = new DenseMatrix64F(dimenZ,1);

S = new DenseMatrix64F(dimenZ,dimenZ);

S_inv = new DenseMatrix64F(dimenZ,dimenZ);

c = new DenseMatrix64F(dimenZ,dimenX);

d = new DenseMatrix64F(dimenX,dimenZ);

K = new DenseMatrix64F(dimenX,dimenZ);

Figure 7: When directly working with the operation functions, matrices that
contain the intermediate results need to be declared.

12

public void update(DenseMatrix64F z, DenseMatrix64F R) {

// y = z - H x

MatrixVectorMult.mult(H,x,y);

sub(z,y,y);

// S = H P H’ + R

MatrixMatrixMult.mult_small(H,P,c);

MatrixMatrixMult.multTransB(c,H,S);

addEquals(S,R);

// K = PH’S^(-1)

if(!chol.decompose(S)) throw new RuntimeException("Invert failed");

chol.setToInverse(S_inv);

MatrixMatrixMult.multTransA_small(H,S_inv,d);

MatrixMatrixMult.mult_small(P,d,K);

// x = x + Ky

MatrixVectorMult.mult(K,y,a);

addEquals(x,a);

// P = (I-kH)P = P - (KH)P = P-K(HP)

MatrixMatrixMult.mult_small(H,P,c);

MatrixMatrixMult.mult_small(K,c,b);

subEquals(P,b);

}

Figure 8: Code from KalmanFilterAlg.java

13

